
PERFORMANCE
PORTABILITY

MAY 4, 2017

TIM WILLIAMS
Deputy Director of Science
ALCF

§ Tens of thousands of nodes
§ Millions of homogeneous cores
§ Multiple memory levels:

– HBM (on-package), DDR, NVM

§ Few thousand nodes
§ CPU + multiple GPUs
§ Coherent shared memory on node
§ Multiple memory levels

– On-package, DDR, NVM

HYBRID MULTI-CORE

2

MANY CORE

TWO ARCHITECTURAL FOR PRE-EXASCALE SYSTEMS

§ Tens of thousands of nodes
§ Millions of homogeneous cores
§ Multiple memory levels:

– HBM (on-package), DDR, NVM

§ Few thousand nodes
§ CPU + multiple GPUs
§ Coherent shared memory on node
§ Multiple memory levels

– On-package, DDR, NVM

HYBRID MULTI-COREMANY CORE

TWO ARCHITECTURAL FOR PRE-EXASCALE SYSTEMS

3

DOE:

Maintain
architectural
diversity

§ Tens of thousands of nodes
§ Millions of homogeneous cores
§ Multiple memory levels:

– HBM (on-package), DDR, NVM

§ Few thousand nodes
§ CPU + multiple GPUs
§ Coherent shared memory on node
§ Multiple memory levels

– On-package, DDR, NVM

HYBRID MULTI-COREMANY CORE

TWO ARCHITECTURAL FOR PRE-EXASCALE SYSTEMS

4

DOE:

Maintain
architectural
diversity

…and
make

applications
portable

§ Tens of thousands of nodes
§ Millions of homogeneous cores
§ Multiple memory levels:

– HBM (on-package), DDR, NVM

§ Few thousand nodes
§ CPU + multiple GPUs
§ Coherent shared memory on node
§ Multiple memory levels

– On-package, DDR, NVM

HYBRID MULTI-COREMANY CORE

TWO ARCHITECTURAL FOR PRE-EXASCALE SYSTEMS

5

DOE:

Maintain
architectural
diversity

…and
make

applications
portable

…with high
performance!

6

§ ALCF, OLCF, NERSC

§ https://asc.llnl.gov/DOE-COE-Mtg-2016/
§ Application Experiences
§ Performance Portable Abstractions
§ Managing Memory Hierarchy
§ Experience with OpenMP
§ Tools
§ DSLs
§ …

ALCF, OLCF, NERSC, LLNL, SNL, LANL, LBN, JLAB, IBM,
INTEL, CRAY, NVIDIA

PERFORMANCE PORTABILITY: WHAT IS IT?

7

PERFORMANCE PORTABILITY: WHAT IS IT?
§ 2014 FASTMath meeting:

– Same piece of code (from the user perspective) runs on different
architectures with ‘good’ performance

– A relatively small amount of effort is needed to make a change to get good
performance within advertised (algorithmic or performance) tolerances across
both current and future architectures

§ Kokkos
– The amount of user code which can be compiled for diverse manycore

architectures and obtain the same, or nearly the same, performance as an
architecture specialized version of that code.

§ A Metric for Performance Portability (Pennycook et al.)
– A measurement of an application’s performance efficiency for a given

problem that can be executed correctly on all platforms in a given set
8

https://arxiv.org/pdf/1611.07409.pdfhttps://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/Edwards-2013-XSCALE13-Kokkos.pdf

PERFORMANCE PORTABILITY STRATEGIES

1. Conditional compilation
2. Directives
3. Libraries
4. Frameworks
5. General-purpose high-level programming languages
6. DSLs (Domain specific languages)
7. Common HPC development environment
8. Co-design hardware and software using scientific apps

9

CONDITIONAL COMPILATION: XGC

§ Particles (ions & electrons) move continuously through toroidal spatial grid
§ Accumulate charge and current densities from particles to grid points
§ Solve Maxwell’s equations on the grid
§ Gather electromagnetic field values from grid to particle positions
§ Move particles via Lorentz force of EM fields on charged particle

Gyrokinetic particle-in-cell tokamak plasma simulation

10
http://epsi.pppl.gov/

CONDITIONAL COMPILATION: XGC

§ Particles (ions & electrons) move continuously through toroidal spatial grid
§ Accumulate charge and current densities from particles to grid points
§ Solve Maxwell’s equations on the grid
§ Gather electromagnetic field values from grid to particle positions
§ Move particles via Lorentz force of EM fields on charged particle

Gyrokinetic particle-in-cell tokamak plasma simulation

11

CONDITIONAL COMPILATION: XGC

§ Particles (ions & electrons) move continuously through toroidal spatial grid
§ Accumulate charge and current densities from particles to grid points
§ Solve Maxwell’s equations on the grid
§ Gather electromagnetic field values from grid to particle positions
§ Move particles via Lorentz force of EM fields on charged particle

Gyrokinetic particle-in-cell tokamak plasma simulation

12

push

CONDITIONAL COMPILATION: XGC

§ Particles (ions & electrons) move continuously through toroidal spatial grid
§ Accumulate charge and current densities from particles to grid points
§ Solve Maxwell’s equations on the grid
§ Gather electromagnetic field values from grid to particle positions
§ Move particles via Lorentz force of EM fields on charged particle

13

§ MPI + OpenMP § Accumulation + field solve:
MPI + OpenMP on CPU

§ Push: CUDA Fortran on GPU

MIRA, THETA (MANY CORE) TITAN (CPU + GPU)

push

Gyrokinetic particle-in-cell tokamak plasma simulation

CONDITIONAL COMPILATION: HACC
Hardware Accelerated Cosmology Code

14

1) Long-range component.
o Particle mesh (PM) method
− Global FFT across all MPI ranks.

2) Short-range component.
o Specifics depend on architecture:
− GPU: Direct pairwise force
− CPU: Tree computation

o Bulk of computational time spent here.
o Requires only rank-local shared memory.

• Underlying calculation is the gravitational force.
• Brute force method . Number of particles . O(N2

p) Np ⇠ 1012

PM mesh
Short-range interaction

MPI decomposition

https://anl.app.box.com/v/IXPUG2016-presentation-12

DIRECTIVES

15

double x[128], y[128];
#pragma omp target data map(to:x[0:64])

map(tofrom:y[0;64])
{
#pragma omp target

{
// y computed on device

}
}

double x[128], y[128];
#pragma omp for simd aligned(x, y: 32)
for (int i=0; i<128; i++) {
// thread’s iterates à SIMD lanes

}

#pragma omp target data map(to:x) {
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < n; ++i) {
y[i] = a*x[i] + y[i];

}
}

§ Can MPI + OpenMP 4+ give us performance portability?

DIRECTIVES

16

§ OpenMP 5.x – proposed memory management support (TR 5)
– Memory space: value of memory traits define characteristics of a space:

• distance = near, far
• bandwidth = highest, lowest
• latency = highest, lowest
• location = core, socket, device
• optimized = bandwidth, latency, capacity, none

Lots of ongoing work trying MPI+OpenMP 4+ on multiple architectures.
Comparisons with OpenACC 2+, other non-directives approaches.

http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf

§ PETSc🔗
§ Trilinos🔗
§ ESSL🔗
§ ScaLAPACK🔗
§ MKL🔗
§ MAGMA 🔗

§ FFTW🔗

§ HYPRE🔗
§ BoxLib 🔗

§ Thrust🔗
– Containers, iterators
– Algorithms

• Transforms w/functors
• Parallel prefix-sums

§ ADLB🔗
§ Global Arrays🔗
§ Legion - data centric🔗
§ HPX🔗🔗
§ Kokkos🔗
§ RAJA🔗

PARALLEL ALGORITHMS/STRUCTURES

17

SOLVERS/MATHEMATICAL

LIBRARIES / FRAMEWORKS

WHY ALL THIS C++?
§ Templates

– template <typename Policy> class A;
• Policy specifes how class A implements functions
• Write tuned specializations for different Policy types
• Functions are non-virtual and can be inlined for speed

– Operator overloading (+, -, …)
– Parenthesis “()” overloading
– Compile-time template metaprogramming
– lambda expressions
– Traits classes – useful properties of a type wrapped in a class

• C++11: include <type_traits>
– is_array, is_class, is_pointer, alignment_of, …

18

RAJA
§ Traversals & execution policies (loop scheduling, execution)
§ IndexSets (iteration space partitioning, ordering, dependencies, placement, etc.)
§ Reduction types (programming model portability)

19

forall<exec_policy>(iset, [&] (Index_type i) {
y[i] += a * x[i] ;

});

How loop iterations are
scheduled to hardware:

OpenMP, sequential, CUDA

https://asc.llnl.gov/DOE-COE-Mtg-2016/talks/1-23_Hornung.pdf
https://asc.llnl.gov/DOE-COE-Mtg-2016/talks/2-09_Beckingsale.pdf

RAJA

20
https://asc.llnl.gov/DOE-COE-Mtg-2016/talks/1-23_Hornung.pdf

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX;
…
for (int i = begin; i < end; ++i) {
 y[i] += a * x[i] ;
 tsum += y[i] ;
 if (y[i] < tmin) tmin = y[i];
}

double* x ; double* y ; double a;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);
…
RAJA::forall< exec_policy > (IndexSet , [=] (int i) {

y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

https://asc.llnl.gov/DOE-COE-Mtg-2016/talks/2-09_Beckingsale.pdf

KOKKOS

§ Data Structures
– View – Multidimensional Array

• View<double**, MemoryTraits<Atomic> > a_atomic = a;
– Kokkos Containers: DualView<type,device>, Vector<t,d>,

UnorderedMap<Key,Value,Device>
§ Parallel Execution

– parallel_for, parallel_reduce, parallel_scan
§ KokkosKernels (under dev COEPP)

– BLAS, Sparse, Graph, Tensor kernels

21
https://asc.llnl.gov/DOE-COE-Mtg-2016/talks/1-22_Trott.pdf

https://github.com/kokkos

22

Performance	Portability	through	Abstrac>on	

Kokkos

Execution Spaces (“Where”)

Execution Patterns (“How”)

Execution Policies

-  N-Level
-  Support Heterogeneous Execution

-  parallel_for/reduce/scan, task spawn
-  Enable nesting

-  Range, Team, Task-Dag
-  Dynamic / Static Scheduling
-  Support non-persistent scratch-pads

Memory Spaces (“Where”)

Memory Layouts (“How”)

Memory Traits

-  Multiple-Levels
-  Logical Space (think UVM vs explicit)

-  Architecture dependent index-maps
-  Also needed for subviews

-  Access Intent: Stream, Random, …
-  Access Behavior: Atomic
-  Enables special load paths: i.e. texture

Parallel Execution Data Structures

Separating of Concerns for Future Systems…

https://asc.llnl.gov/DOE-COE-Mtg-2016/talks/1-22_Trott.pdf

23

§ Charm++🔗
§ UPC🔗
§ X10🔗

§ Coarray Fortran (Fortran 2008)🔗
§ HPF🔗
§ Chapel🔗

GENERAL-PURPOSE HIGH-LEVEL LANGUAGES

DSLs (DOMAIN SPECIFIC LANGUAGES)
§ “Natural” language of the scientific/mathematical domain
§ Compact, unambiguous

§ Example: NMODL DSL
– Domain: computational

neuroscience

24

NEURON {
SUFFIX leak
NONSPECIFIC_CURRENT I
RANGE i, e, g

}

PARAMETER {
g = 0.001 (siemens/cm2) < 0, 1e9 >
e = -65 (millivolt)

}

ASSIGNED {
i (milliamp/cm2)
v (millivolt)

}

http://mcraveiro.blogspot.com/2015/11/nerd-food-tooling-in-computational.html

DSL FOR PERFORMANCE PORTABILITY
§ CoreNEURON brain tissue simulation

25

NEURON {
SUFFIX leak
NONSPECIFIC_CURRENT I
RANGE i, e, g

}

PARAMETER {
g = 0.001 (siemens/cm2) < 0, 1e9 >
e = -65 (millivolt)

}

ASSIGNED {
i (milliamp/cm2)
v (millivolt)

}

NMODL
Description

Code
generator

Executable

Compiler

Modeling Kernels
C/C++/CUDA/

OpenMP/OpenCL…

KNL FPGAGPU Neuromorphic …

Framework
(C/C++)

http://www.alcf.anl.gov/projects/large-scale-simulation-brain-tissue-blue-brain-project-epfl

26

§ Establish performance targets/bounds
§ Detailed characterization of

performance
§ Extract kernels/mini-apps
§ Encapsulate portability challenges

– Modularity
– High-level abstractions
– Libraries
– …good software engineering

practices

§ Avoid architecture specific models:
– Intel Thread Building Blocks
– NVIDIA CUDA
– If necessary, encapsulate

§ Good coding practices
– Parameters for thread counts a d

thread placements
– Data structures flexibly allocatable

to different memory spaces
– Task level flexibility so work can be

allocated on different compute
elements (GPU & CPU)

FREE ADVICE

27

NOT DONE YET

ALCF
• NekBone

NERSC
• BoxLib MG solvers

OLCF
• DSL-based library for MD

§ Concrete portability studies:

§ Another one in 2017

§ Developing best practices guide

www.anl.gov

